Multilanguage Dependency Parsing

Giuseppe Attardi
Dipartimento di Informatica
Università di Pisa
Contributors: Massimo Ciaramita, Maria Simi

Language and Intelligence

"Understanding cannot be measured by external behavior; it is an internal metric of how the brain remembers things and uses its memories to make predictions".

"The difference between the intelligence of humans and other mammals is that we have language".

Jeff Hawkins, “On Intelligence”, 2004

Hawkins’ Memory-Prediction framework

- The brain uses vast amounts of memory to create a model of the world. Everything you know and have learned is stored in this model. The brain uses this memory-based model to make continuous predictions of future events. It is the ability to make predictions about the future that is the crux of intelligence.

More …

- "Spoken and written words are just patterns in the world… The syntax and semantics of language are not different from the hierarchical structure of everyday objects. We associate spoken words with our memory of their physical and semantic counterparts. Through language one human can invoke memories and create next juxtapositions of mental objects in another human."

Conclusion

- Ability to process language will become essential in many computer applications

Disruptive Technology

- Heather McCallum-Bayliss, director at the Disruptive Technology Office
- Keynote at TREC 2006:
 - DTO is set to solve one hard problem: Human Language
Is NLP needed?

- Many Information Retrieval tasks can do without
 - Document retrieval, categorization, summarization, information filtering
- Focus on Document Retrieval reduces the need for NLP techniques
 - Discourse factors can be ignored
 - Redundant words perform word-sense disambiguation
- Lack of robustness:
 - NLP techniques are typically not as robust as word indexing

Semantic Document Analysis

- Question Answering
 - Return precise answer to natural language queries
- Relation Extraction
- Intent Mining
 - assess the attitude of the document author with respect to a given subject, e.g. problem (description, solution), agreement (assent, dissent), preference (likes, dislikes), statement (claim, denial)
 - Opinion mining: attitude is a positive or negative opinion

Question Answering is Different

- Search Engines return list of (possibly) relevant documents
- Users still have to dig through returned list to find answer
- QA: give the user a (short) answer to their question, perhaps supported by evidence

TREC 2000 Results (long)

Falcon

- The Falcon system from SMU was by far best performing system at TREC 2000
- It used NLP and performed deep semantic processing

PiQASso Answer Matching

Tungsten is a very dense material and has the highest melting point of any metal.

1. Parsing
2. Answer type check
3. Relation extraction
4. Matching Distance
5. Distance Filtering
6. Popularity Ranking

What metal has the highest melting point? tungsten

SMU: Falcon system from SMU was by far best performing system at TREC 2000. It used NLP and performed deep semantic processing.
AskMSR: Web Mining

Step 1: Rewrite queries

- **Intuition:** The user's question is often syntactically quite close to sentences that contain the answer
 - *Where is the Louvre Museum located?*
 - *The Louvre Museum is located in Paris*
 - *Who created the character of Scrooge?*
 - *Charles Dickens created the character of Scrooge.*

Query rewriting

- **Classify question into seven categories**
 - Who is/was/are/were…?
 - When is/did/will/are/were …?
 - Where is/are/were …?

 a. Category-specific transformation rules
 - For *Where* questions, move *is* to all possible locations
 - *Where is the Louvre Museum located?*
 - *the Louvre Museum is located in Paris*

 b. Expected answer “Datatype” (eg. Date, Person, Location, …)
 - *When was the French Revolution?* → DATE

- **Hand-crafted classification/rewrite/datatype rules**

Step 2: Query search engine

- Send all rewrites to a Web search engine
- Retrieve top N answers
- For speed, rely just on search engine’s “snippets”, not the full text of the actual document

TREC 2006 QA: Factoid

Best QA Systems at TREC 2006

- LCC PowerAnswer (58% accuracy), LCC Chaucer (54%)
- Both use NLP tools to tokenize, POS tag and syntactic parse each question
Chaucer: Answer Extraction

- **Strategies:**
 1. NE
 - select passages containing answer NE
 - finds quite high number of correct answers
 2. hard pattern-based (hand-crafted rules)
 3. authoritative sources (retrieved from Web: imdb)
 4. soft pattern based (Cui, Kan, & Chua 2004)
 5. FrameNet: answer parsed and ranked according to semantic frames
 6. predictive question-based

FrameNet Matching example

- **Question:** How old was Padre Pio when he died?
 - Frames: Age[Padre Pio], Death[Padre Pio]
- **Answer:** Padre Pio, who died in 1968 at the age of 81, was right.
 - Frames: Age[Padre Pio, 81], Death[Padre Pio, 1968]

Answer Selection

- **Uses Textual Entailment system**
- **Less formal than logical entailment.** Satisfied is one passage can be reasonably inferred.

NL Parser

Parser Requirements

- **Multilingual**
 - Trainable on annotated corpora
- **Accurate**
 - Close to state of the art
- **Flexible**
 - Retrainable through unannotated corpora
- **Efficient**
 - Hundreds sentence/sec
 - Deterministic bottom-up parser

Statistical Parsers

- **Major breakthrough in computational linguistics in recent years**
- **Parser types:**
 - Constituent parser
 - Dependency parser
Constituent Parsing

- Requires Phrase Structure Grammar
 - CFG, PCFG, Unification Grammar
- Produces phrase structure parse tree

Rolls-Royce Inc. said it expects its sales to remain steady

Linear Parsing Model

- Requires Phrase Structure Grammar
 - CFG, PCFG, Unification Grammar
- Produces phrase structure parse tree

Statistical Classifier

- Given a set of train examples, learn weights for each feature, in order to compute scoring function

Constituent Parsing

- GEN: e.g. CFG (Context-Free Grammar)
- \(h(x) \) feature of tree \(x \), based on aspects of the tree

 e.g.

 \(h(x) = \# \text{ of times } \) occurs in \(x \)

Constituent Parsers

- Probabilistic Generative Model of Language which include parse structure (e.g. Collins 1997)
- Conditional parsing models (Charniak 2000; McDonald 2005)

Dependency Parsing

- Produces dependency trees
- Word-word dependency relations
- Far easier to understand and to annotate

Rolls-Royce Inc. said it expects its sales to remain steady
Generative Dependency Parsing
- McDonald et al. 2005
- GEN generates all possible Spanning Trees
- Select Maximum ST with best feature vector

Shift/Reduce Dependency Parser
- Traditional statistical parsers are trained directly on the task of selecting a parse tree for a sentence
- Instead a Shift/Reduce parser is trained and learns the sequence of parse actions required to build the parse tree

Grammar Not Required
- A traditional parser requires a grammar for generating candidate trees
- A Shift/Reduce parser needs no such grammar

Parsing as Classification
- Parsing based on Shift/Reduce actions
- Learns from annotated corpus which action to perform at each step
- Proposed by (Yamada-Matsumoto 2003) and (Nivre 2003)
- Uses only local information, but it can exploit history

Parser Actions

Dependency Graph
$D = \{d_1, \ldots, d_n\}$ set of dependency types
A dependency graph for a sequence of words $W = w_1 \ldots w_n$ is a labeled directed acyclic graph
$G = (W, A)$, where
(a) W is the set of nodes
(b) A is a set of labeled arcs (w_i, d, w_j)
 $w_i, w_j \in W, d \in D$
(c) $\forall w_i \in W$, there is at most one arc
 $(w_i, d, w_j) \in A$
The parser state is a quadruple 〈S, I, T, A〉, where

S is a stack of partially processed tokens
I is a list of (remaining) input tokens
T is a stack of temporary tokens
A is the arc relation for the dependency graph

(w, r, h) ∈ A represents an arc w → h, tagged with dependency r

Parser Actions

| Shift | 〈S, n|I, T, A〉 |
|-------|----------------|
| Right | 〈S, n|I, T, A∪{(s, r, n)}〉 |
| Left | 〈S, s|I, T, A∪{(n, r, s)}〉 |

The parsing algorithm is fully deterministic:

Input Sentence: (w1, p1), (w2, p2), … , (wn, pn)
S = <>
I = <(w1, p1), (w2, p2), … , (wn, pn)>
T = <>
A = { }
while I ≠ <> do begin
 x = getContext(S, I, T, A);
 y = estimateAction(model, x);
 performAction(y, S, I, T, A);
end

Learning Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>word</td>
</tr>
<tr>
<td>l</td>
<td>lemma</td>
</tr>
<tr>
<td>P</td>
<td>part of speech (POS) tag</td>
</tr>
<tr>
<td>M</td>
<td>morphology: e.g. singular/plural</td>
</tr>
<tr>
<td>W<</td>
<td>word of the leftmost child node</td>
</tr>
<tr>
<td>L<</td>
<td>lemma of the leftmost child node</td>
</tr>
<tr>
<td>P<</td>
<td>POS tag of the leftmost child node, if present</td>
</tr>
<tr>
<td>M></td>
<td>whether the rightmost child node is singular/plural</td>
</tr>
<tr>
<td>W></td>
<td>word of the rightmost child node</td>
</tr>
<tr>
<td>L></td>
<td>lemma of the rightmost child node</td>
</tr>
<tr>
<td>P></td>
<td>POS tag of the rightmost child node, if present</td>
</tr>
<tr>
<td>M></td>
<td>whether the rightmost child node is singular/plural</td>
</tr>
</tbody>
</table>

Learning Event

Learning Phase

Learning Features:
- Word
- Lemma
- Part of speech (POS) tag
- Morphology: e.g. singular/plural
- Word of the leftmost child node
- Lemma of the leftmost child node
- POS tag of the leftmost child node, if present
- Whether the rightmost child node is singular/plural
- Word of the rightmost child node
- Lemma of the rightmost child node
- POS tag of the rightmost child node, if present
- Whether the rightmost child node is singular/plural

Learning Event:

- Position: before, after
- Target nodes: PRO, VER, NOM, ADV
- Right context: PRO, VER, NOM, ADV
- Left context: PRO, VER, NOM, ADV
- Discourse: PRO, VER, NOM, ADV
- Sentence: PRO, VER, NOM, ADV
- Morphology: singular/plural
- Part of speech (POS) tag
- Lemma
DeSR Parser Architecture

- Modular learners architecture:
 - MaxEntropy, MBL, SVM, Winnow, Perceptron
- Classifier combinations: e.g. multiple MEs, SVM + ME
- Features can be selected

Feature used in Experiments

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LemmaFeatures</td>
<td>-2 -1 0 1 2 3</td>
</tr>
<tr>
<td>PosFeatures</td>
<td>-2 -1 0 1 2 3</td>
</tr>
<tr>
<td>MorphoFeatures</td>
<td>-1 0 1 2</td>
</tr>
<tr>
<td>PosLeftChildren</td>
<td>2</td>
</tr>
<tr>
<td>PosLeftChild</td>
<td>-1 0</td>
</tr>
<tr>
<td>DepLeftChild</td>
<td>-1 0</td>
</tr>
<tr>
<td>PosRightChildren</td>
<td>2</td>
</tr>
<tr>
<td>PosRightChild</td>
<td>-1 0</td>
</tr>
<tr>
<td>DepRightChild</td>
<td>-1 0</td>
</tr>
<tr>
<td>PastActions</td>
<td>1</td>
</tr>
</tbody>
</table>

Projectivity

- An arc $w_i \rightarrow w_k$ is projective iff
 $\forall j, i < j < k$ or $i > j > k$,
 $w_j \rightarrow^* w_k$

- A dependency tree is projective iff every arc is projective

- Intuitively: arcs can be drawn on a plane without intersections

Non Projective

![Dependency Tree](image)

Actions for non-projective arcs

<table>
<thead>
<tr>
<th>Action</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right2</td>
<td>$(s_1, s_2), [S, n], (l, T, A)$</td>
</tr>
<tr>
<td>Left2</td>
<td>$(s_1, s_2), [S, n], l, T, A, (s_2, n)$</td>
</tr>
<tr>
<td>Right3</td>
<td>$(s_1, s_2), [S, n], (l, T, A, (m, r, s))$</td>
</tr>
<tr>
<td>Left3</td>
<td>$(s_1, s_2), [S, n], l, T, A, (m, r, s)$</td>
</tr>
<tr>
<td>Extract</td>
<td>$(s_1, s_2), [S, n], l, T, A$</td>
</tr>
<tr>
<td>Insert</td>
<td>$(s_1, s_2), [S, n], l, T, A$</td>
</tr>
</tbody>
</table>

Example

- **Right2** (nejen \rightarrow ale) and **Left3** (fax \rightarrow Většinu)

![Dependency Tree](image)
Effectiveness for Non-Projectivity

- Training data for Czech contains 28081 non-projective relations
- 26346 (93%) can be handled by Left2/Right2
- 1683 (6%) by Left3/Right3
- 52 (0.2%) require Extract/Insert

CoNLL-X Shared Task

- To assign labeled dependency structures for a range of languages by means of a fully automatic dependency parser
- Input: tokenized and tagged sentences
- Tags: token, lemma, POS, morpho features, ref. to head, dependency label
- For each token, the parser must output its head and the corresponding dependency relation
CoNLL-X: Collections

<table>
<thead>
<tr>
<th>Language</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>164.47</td>
<td>10.94</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Bulgarian</td>
<td>82.39</td>
<td>45.32</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Chinese</td>
<td>61.69</td>
<td>61.69</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Dutch</td>
<td>77.49</td>
<td>47.96</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Dutch</td>
<td>74.99</td>
<td>47.96</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Japanese</td>
<td>84.17</td>
<td>84.17</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>German</td>
<td>80.01</td>
<td>47.96</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Portuguese</td>
<td>79.40</td>
<td>79.40</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Slovene</td>
<td>61.97</td>
<td>61.97</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Spanish</td>
<td>77.23</td>
<td>77.23</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Swedish</td>
<td>84.68</td>
<td>84.68</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Turkish</td>
<td>58.18</td>
<td>58.18</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

CoNLL: Evaluation Metrics

- **Labeled Attachment Score (LAS)**
 - proportion of “scoring” tokens that are assigned both the correct head and the correct dependency relation label
- **Unlabeled Attachment Score (UAS)**
 - proportion of “scoring” tokens that are assigned the correct head

Shared Task Unofficial Results

<table>
<thead>
<tr>
<th>Language</th>
<th>LAS</th>
<th>UAS</th>
<th>Train sec</th>
<th>LAS</th>
<th>UAS</th>
<th>Train sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>80.94</td>
<td>85.70</td>
<td>75.00</td>
<td>79.89</td>
<td>84.79</td>
<td></td>
</tr>
<tr>
<td>Bulgarian</td>
<td>79.98</td>
<td>82.88</td>
<td>85.80</td>
<td>87.59</td>
<td>87.59</td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>78.32</td>
<td>81.49</td>
<td>84.02</td>
<td>86.76</td>
<td>86.76</td>
<td></td>
</tr>
<tr>
<td>Czech</td>
<td>67.17</td>
<td>67.20</td>
<td>77.01</td>
<td>80.22</td>
<td>80.22</td>
<td></td>
</tr>
<tr>
<td>Danish</td>
<td>78.31</td>
<td>78.46</td>
<td>84.52</td>
<td>86.21</td>
<td>86.21</td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>78.33</td>
<td>78.46</td>
<td>77.07</td>
<td>77.07</td>
<td>77.07</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>85.86</td>
<td>85.86</td>
<td>89.05</td>
<td>87.90</td>
<td>87.90</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>77.55</td>
<td>80.03</td>
<td>86.48</td>
<td>87.74</td>
<td>87.74</td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>80.63</td>
<td>80.63</td>
<td>86.46</td>
<td>87.74</td>
<td>87.74</td>
<td></td>
</tr>
<tr>
<td>Slovene</td>
<td>65.16</td>
<td>62.67</td>
<td>76.32</td>
<td>76.32</td>
<td>76.32</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>73.12</td>
<td>74.37</td>
<td>77.76</td>
<td>79.76</td>
<td>79.76</td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>76.46</td>
<td>76.46</td>
<td>84.21</td>
<td>84.21</td>
<td>84.21</td>
<td></td>
</tr>
<tr>
<td>Turkish</td>
<td>55.95</td>
<td>58.81</td>
<td>69.35</td>
<td>69.35</td>
<td>69.35</td>
<td></td>
</tr>
</tbody>
</table>

Latest Improvements

<table>
<thead>
<tr>
<th>Language</th>
<th>UAS</th>
<th>LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>91.00</td>
<td>92.03</td>
</tr>
<tr>
<td>Swedish</td>
<td>83.87</td>
<td>89.40</td>
</tr>
<tr>
<td>Spanish</td>
<td>80.16</td>
<td>83.51</td>
</tr>
<tr>
<td>Slovene</td>
<td>70.52</td>
<td>80.50</td>
</tr>
</tbody>
</table>

Performance Comparison

- Running an SVM-based parser (MaltParser 0.4) on same Xeon 2.8 MHz machine
- Training on Swedish Talbanken:
 - 390 min
- Test on CoNLL Swedish test set (~5000 tokens):
 - 13 min
Why performance

- It can be run on massive collection
 - Text mining
 - Semantic Document Analysis (news)
 - Semantic Web
- It can be run on your desktop:
 - Desktop search
 - Mail analysis (e.g. better spam)
 - Semantic document correlation

Revising Parse Trees

Reranking Approaches

- Base parser produces a set of candidate parses, with initial associated
- A second statistical model is trained on the output trees, using a different set of features
- used to rerank these parses assigning a score to each
- Reranking achieves error reduction up to 13% (Collins and Koo 2006)

Intuition

- A dependency parser is mostly right in identifying chunks
- Only local corrections are needed to rearrange such chunks
- Generating several parses would often just repeat the same steps

Sample Error

Sample errors
Learn tree transformations to correct errors
- Additional information can be gathered from trees
 - Including semantic information
 - Named Entity
 - Semantic Role Label

What Kind of Tree Transformations?
- Simple to identify
- Simple to apply
- Simplification assumptions:
 - No node addition/deletion
 - Transformations are Independent

Revision Rules

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up to parent</td>
</tr>
<tr>
<td>n+1</td>
<td>Left to the n-th token</td>
</tr>
<tr>
<td>i+1</td>
<td>Right to the i-th token</td>
</tr>
<tr>
<td>i</td>
<td>Head of previous constituent</td>
</tr>
<tr>
<td>j</td>
<td>Head of following constituent</td>
</tr>
<tr>
<td>τ</td>
<td>First token of previous constituent</td>
</tr>
<tr>
<td>ς</td>
<td>First token of following constituent</td>
</tr>
<tr>
<td>L−1</td>
<td>Down to leftmost child</td>
</tr>
<tr>
<td>R++</td>
<td>Down to rightmost child</td>
</tr>
<tr>
<td>R−1</td>
<td>Down to first left child</td>
</tr>
<tr>
<td>R+1</td>
<td>Down to first right child</td>
</tr>
<tr>
<td>2D</td>
<td>Down to token with POS 2</td>
</tr>
</tbody>
</table>

Given \(G = (s, A) \) for sentence \(s = (w_1, \ldots, w_n) \)
A revision rule is a mapping \(r : A \to A', \) such that \(r(w_n, d, w_j) = (w_n, d', w_j') \)

Compute \(R = (r_1, \ldots, r_m) \)
Transformed tree: \(R(G) = (s, A') \) where \(A' = \{ r(w_n, d, w_j) \mid (w_n, d, w_j) \in A \} \)
Results: WSJ

<table>
<thead>
<tr>
<th>Parser</th>
<th>UAS</th>
<th>LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeSR-ME</td>
<td>84.96</td>
<td>83.55</td>
</tr>
<tr>
<td>DeSR-MBL</td>
<td>88.41</td>
<td>86.85</td>
</tr>
<tr>
<td>DeSR-MBL-Revision</td>
<td>89.11</td>
<td>86.39</td>
</tr>
<tr>
<td>DeSR-ME-Revision</td>
<td>90.27</td>
<td>88.41</td>
</tr>
<tr>
<td>McDonald</td>
<td>91.50</td>
<td></td>
</tr>
<tr>
<td>Nivre&Scholz</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>V&M</td>
<td>90.3</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
- Somewhat surprisingly, training for revisions on the data produced by the more accurate parser gives lower error reduction
- Suggestion: generate bad parser on purpose
- For instance: use less training data

Results: Swedish

<table>
<thead>
<tr>
<th>Parser</th>
<th>UAS</th>
<th>LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeSR-SVM</td>
<td>88.41</td>
<td>83.31</td>
</tr>
<tr>
<td>DeSR-SVM-Revision</td>
<td>89.76</td>
<td>83.13</td>
</tr>
<tr>
<td>Corston-Oliver</td>
<td>89.54</td>
<td>82.33</td>
</tr>
<tr>
<td>Nivre</td>
<td>89.50</td>
<td>84.58</td>
</tr>
</tbody>
</table>

Remarks
- **Tree Revision:**
 - Simple idea
 - Effective
 - Can still be improved

TreeBank Annotations

- All tokens from the original sentence must be present, including punctuations
- No extra tokens must be present
- Each token must have exactly one dependency link
- Dependency links make a tree without cycles, with a single root
Adapting TreeBank to Parsing

- TreeBanks can be designed for different goals
 - Linguists: representing accurately all linguistic phenomena
 - Computational linguists:
 - statistical analysis
 - input for machine-learning tools
 - Semanticists:
 - analyzers of semantics and discourse structure

Dependency Structures

- Dependency formalism is non prescriptive
- Different ways to represent same meaning
- For example:
 - Coordination (“apples, peaches and pears”)
 - Preposition-noun relation
 - Finite verb to auxiliary relation (“has gone”)

Parser Accuracy

- Nivre experiments on Swedish Talbanken:
 - conjuncts will together with the conjunctions form a chain
 - Preposition-noun relation: preposition becomes the head
 - finite verb is the head of the non-finite verb
- Improvement of 2.4% in UAS

Example: aux

Example: conjunctions

Example: relatives
Italian Treebank

- Cooperation with CNR ILC
- Access to SI-TAL corpus
- Working on completing annotation and converting to CoNLL format
- Semiautomated process: heuristics + manual fixup

DgAnnotator

- A GUI tool for:
 - Annotating texts with dependency relations
 - Visualizing and comparing trees
 - Generating corpora in XML or CoNLL format
 - Exporting DG trees to PNG
- **Demo**
- Available at: http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator/

DgAnnotator Example

- A María Juan la vió ayer.
- A tu hermano Juan no lo puede ni ver.
- Ese libro el nio debe leerlo cuanto antes.
- A Pedro la carta hay que escribírsela pronto.
- I dolci ho mangiati ieri.
- Di questo non ne voglio parlare.
- A Roma io non ci vado.
- Ai jardí els nens s’hi diveteixen molt.

Opinion Mining

TREC Blog 2006

- **Resources**
- **Collection of blogs**
 - from a crawl of 100,649 RSS/Atom feeds, over 11 weeks
 - Several languages
 - Includes spam
- **Set of 4000 opinionated words, with both positive/negative weights**
 - Computed by [Esuli & Sebastiani, 2005] using classifier trained on WordNet glosses
Sample Topics
- Larry Summers
- Macbook pro
- Skype 2.0
- Colbert Report

Opinion Retrieval
- Typical 2-stage approach:
 1. Perform IR and rank by topic relevance
 2. Postprocess results with filters and rerank
- Single-stage approach:
 - Enrich the index with opinion tags
 - Perform normal retrieval with custom ranking function

Enriched Index
- Overlay words with tags

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>music</td>
<td>is</td>
<td>a touch</td>
<td>lame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soundtrack</td>
<td>little</td>
<td>weak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART</td>
<td>bit</td>
<td>plate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enhanced Queries
- music NEGATIVE:lame
- music NEGATIVE:*

Opinionated proximity
- Query: proximity 3 [OPINIONATED:* skype]
 - Skype Doesn’t Want My Money
 - … guys working on Skype and no one really took it seriously
 - Para aquellos que no conozcan Skype

Accuracy-Performance Tradeoff

<table>
<thead>
<tr>
<th>run</th>
<th>time</th>
<th>p@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Chicago</td>
<td>12 hours</td>
<td>52.00</td>
</tr>
<tr>
<td>University of Amsterdam</td>
<td>48.80</td>
<td></td>
</tr>
<tr>
<td>University of Pisa</td>
<td>6.28 sec</td>
<td>47.60</td>
</tr>
</tbody>
</table>
References